Arousal and Locomotion Make Distinct Contributions to Cortical Activity Patterns and Visual Encoding
نویسندگان
چکیده
Spontaneous and sensory-evoked cortical activity is highly state-dependent, yet relatively little is known about transitions between distinct waking states. Patterns of activity in mouse V1 differ dramatically between quiescence and locomotion, but this difference could be explained by either motor feedback or a change in arousal levels. We recorded single cells and local field potentials from area V1 in mice head-fixed on a running wheel and monitored pupil diameter to assay arousal. Using naturally occurring and induced state transitions, we dissociated arousal and locomotion effects in V1. Arousal suppressed spontaneous firing and strongly altered the temporal patterning of population activity. Moreover, heightened arousal increased the signal-to-noise ratio of visual responses and reduced noise correlations. In contrast, increased firing in anticipation of and during movement was attributable to locomotion effects. Our findings suggest complementary roles of arousal and locomotion in promoting functional flexibility in cortical circuits.
منابع مشابه
Electrocortical amplification for emotionally arousing natural scenes: the contribution of luminance and chromatic visual channels.
Emotionally arousing scenes readily capture visual attention, prompting amplified neural activity in sensory regions of the brain. The physical stimulus features and related information channels in the human visual system that contribute to this modulation, however, are not known. Here, we manipulated low-level physical parameters of complex scenes varying in hedonic valence and emotional arous...
متن کاملCentral thalamic contributions to arousal regulation and neurological disorders of consciousness.
This review focuses on the contributions of the central thalamus to normal mechanisms of arousal regulation and to neurological disorders of consciousness. Forebrain arousal is regulated by ascending influences from brainstem/basal forebrain neuronal populations ("arousal systems") and control signals descending from frontal cortical systems. These subcortical and cortical systems have convergi...
متن کاملBrainstem network dynamics underlying the encoding of bladder information
Urodynamic status must interact with arousal and attentional processes so that voiding occurs under appropriate conditions. To elucidate the central encoding of this visceral demand, multisite recordings were made within a putative pontine-cortical micturition circuit from the pontine micturition center (PMC), locus coeruleus (LC) and medial prefrontal cortex (mPFC) during cystometry in unanest...
متن کاملAction of brain-derived neurotrophic factor on function and morphology of visual cortical neurons
Brain-derived neurotrophic factor (BDNF) is known to play a role in experience-dependent plasticity of the developing visual cortex. For example, BDNF acutely enhances long-term potentiation and blocks long-term depression in the visual cortex of young rats. Such acute actions of BDNF suggested to be mediated mainly through presynaptic mechanisms. A chronic application of BDNF to the visual cor...
متن کاملAction of brain-derived neurotrophic factor on function and morphology of visual cortical neurons
Brain-derived neurotrophic factor (BDNF) is known to play a role in experience-dependent plasticity of the developing visual cortex. For example, BDNF acutely enhances long-term potentiation and blocks long-term depression in the visual cortex of young rats. Such acute actions of BDNF suggested to be mediated mainly through presynaptic mechanisms. A chronic application of BDNF to the visual cor...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Neuron
دوره 86 شماره
صفحات -
تاریخ انتشار 2015